Electric vehicles 101

Electric vehicles 101

Get to know electric vehicles better.

The more you know, the more you’ll want one!

Sign up for our EV deals

Quick links

What is an EV?

An electric vehicle (EV) is a vehicle that runs on electricity. There are three main types of vehicle commonly called "electric", and it's worth knowing the difference:

  1. Battery electric vehicles (BEVs) run only on electricity. With a BEV, you charge the car's battery with electricity. That battery then powers the electric motor, which propels the car forward. Since the car itself is not burning a fuel to generate movement, there are no tail-pipe emissions. Instead, the carbon footprint of a BEV depends on how the electricity that runs it is produced. Some common BEVs in our program are the Chevrolet Bolt, Nissan LEAF, and Hyundai Kona EV.
  2. Plug-in hybrids (PHEVs) combine a battery-powered electric motor with an internal combustion engine. You charge your vehicle with electricity and use it much like an all-electric vehicle. However, if and when you run out of charge, the internal combustion engine serves as a back-up. While running only on electricity, a PHEV's carbon footprint again depends on the fuel mix that generated the electricity. As soon as the internal combustion engine switches on, the engine's tail-pipe emissions add to the vehicle's carbon footprint. Some common PHEVs in our program are the Toyota Prius Prime, Mitsubishi Outlander, and Honda Clarity. 
  3. Hybrid electric vehicles (HEVs) also combine an internal combustion engine and an electric propulsion system. However, HEVs are “charged” with gasoline; you cannot plug them in to charge them with electricity, so they are not strictly speaking “EVs”. However, HEVs are more efficient than traditional internal combustion engines because they take advantage of technologies such as regenerative braking. The best known HEV is the Toyota Prius.

When we talk about “EVs”, we’re talking about battery-electric vehicles (BEVs) and plug-in hybrids (PHEVs). The Drive Green program does not include HEVs.

EVs contrast with conventional vehicles, which run on an internal combustion engine: you add a fuel (gasoline, diesel fuel, or ethanol), it ignites and releases energy that is translated into motion. In the process, however, the vehicle releases carbon dioxide, one of the greenhouse gases contributing to climate change.

Want to read more about electric vehicles? In addition to our Drive Green website pages, we write regularly about clean transportation on our blog. Check out our electric vehicle posts here!

EVs are more efficient than gasoline-powered cars

EVs are better for the environment than gas-powered cars, not just because gas-powered cars rely on fossil fuels, but because EVs are more efficient.

Efficiency measures how much of the energy in fuel is converted into kinetic energy to get the tires rolling. It is impossible for any machine to be 100% efficient because some energy is always lost to heat, friction, and wind resistance. But in general, the higher the efficiency, the less energy needed to power a car. In other words, efficiency means achieving the same performance without consuming as much energy.

This has big implications for moving towards a low-carbon future. For every unit of energy we don't have to use because of improved efficiency, we are reducing our demand for energy and making it more feasible for renewables to dominate our electrical grid. It means we're doing more with less, or creating what environmentalist Amory Lovins would call a "negawatt."

Gas- and diesel-powered vehicles are not very efficient because they rely on internal combustion engines, which generate a lot of waste heat. There are also a lot more moving parts in thermal engines, like fuel pumps, and they use some of the gasoline's energy but don't contribute to the car's motion. As a result, gas-powered cars can convert only about 17% - 21% of the available energy in gasoline to kinetic energy. You can see a breakdown of where all that lost energy goes here.


energy losses in gasoline-powered cars

The energy losses in gasoline-powered cars, from fueleconomy.gov

Regenerative braking, which recovers the energy that is otherwise wasted when we use brakes, has been instrumental in improving vehicle efficiency. Hybrid cars have this feature. Regenerative braking can improve the efficiency of a fossil-fuel-powered car up to between 21% and 40%. That means that even the most efficient gas-powered cars can use only about 40% of the available energy stored in gasoline.

By comparison, the efficiency of an electric car typically hovers around 60%, jumping up to about 77% if you include the effects of regenerative braking – which you should, since all electric cars use it. EV efficiency is then four times better than the average gas-powered vehicle and two times better than the most efficient hybrid. So by driving an electric car, you're not only reducing demand for oil specifically, but you're consuming less overall energy to travel the same number of miles.

This difference in efficiency has two big take-aways. First, it costs less to run a car on electricity than petroleum. Second, it adds to the environmental benefits of EVs.


Electric vehicles (EVs) undergo the same safety testing and meet the same safety standards required of traditional internal combustion engine (ICE) vehicles. In fact, several major independent government agencies believe electric vehicles are safer than gas guzzlers because of the way weight is distributed in them and the lack of an internal-combustion engine. 

The battery packs of EVs are located in the base of the car and give them a low center-of-mass. This increases the car's stability and reduces the risk of rollover in the event of an accident. Furthermore, without an engine in the front end of the vehicle, the crumple zone of EVs can absorb more force during a front-end collision, reducing the risk of injury for passengers.

The lack of a traditional engine also lowers the risk of fire. Most highway fires are caused or exacerbated by the flammable liquids (in other words, the fuel!) inside the combustion engine, which is not an issue in battery-powered vehicles. And with most of their weight in the floorboards, EVs have better handling and maneuverability, so they're less likely to get into an accident in the first place.

There are additional, EV-specific safety standards that electric cars must meet to ensure the battery is protected from collision. According to the United States Department of Energy, EV-specific standards prevent chemical spillage, secure batteries during a crash, and isolate the chassis from the high-voltage system to prevent electric shock.

If you'd like to compare safety ratings between different EV models, here are some great resources we recommend:

Sometimes ratings are a year behind for very new models. We recommend that you consider a couple of EVs that appeal to you for reasons of cost, electric range, size, and other features, then look up their safety ratings.

But if safety is your number one priority, here's a list of the 5 safest EVs you can buy.

Side Mirror

EVs That Offer Advanced Safety Systems

Want to learn more about EVs and advanced safety systems? Check out this article by MYEV.com. You'll learn which cars offer adaptive cruise control, blind-spot warning and more!

Crash Test dummy

Electric & Hybrid Cars Have Better IIHS Safety Ratings Than Gasmobiles

The Insurance Institute for Highway Safety (IIHS) has shown that EVs have  significantly better IIHS safety ratings. To read more about it, check out this article by Clean Technica.

Car shopping & EV basics

Useful Resources

About EVs:

About Car Shopping:

Range & Charging

The Battery & Range

The Battery & Range

EV battery size is measured in kilowatt-hours (kWh). The more kWh capacity your car’s battery has, the farther you can go between charges. This kWh capacity, along with your car's efficiency, determines your car’s range.

The Onboard Charger

The Onboard Charger

Your car will have an onboard charger. Its capacity, measured in kilowatts (kW), affects your charging speed. The more kW, the faster the charge!

Benefits of EVs

Do you still have some burning EV questions? We have you covered. See below for the list of EV related topics we have written about. 

  • EnvironmentA vehicle running only on electricity has zero tail-pipe emissions. Even if you account for the emissions associated with producing the electricity to charge them, electric vehicles charged with electricity in New England produce far fewer greenhouse gas emissions than vehicles powered by internal combustion engines. For more information, check out our Environment page.
  • Consumer SavingsSwitching from a gas-powered car to an electric car saves you money. Find out more by checking out the Consumer Savings portion of our website.
  • Rebates and IncentivesIf you're interested in buying or leasing an EV, check out our Rebates and Incentives page for more information.
  • ChargingNeed to know more about range and charging speed? Confused about charging equipment? We have that information and much more on our Charging page.
  • Winter DrivingEVs are a great choice for winter driving. Find out why by visiting our Winter driving page.
  • Public Health - Find out how EVs protect our health by visiting our Public Health page.
  • Time-Of-Use Rates - Time-of-use (TOU) pricing allows EV owners to charge their cars at even lower rates. Find out if this is available in your state by visiting our Time-Of-Use Rates page.


Ready to get started?